Transformation	Image of the Unit Square	Standard Matrix
Reflection through the x_1 -axis	$\begin{bmatrix} 0\\ -1 \end{bmatrix}$	$\left[\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right]$
Reflection through the x_2 -axis	$\begin{bmatrix} x_2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection through the line $x_2 = x_1$	$\begin{bmatrix} 0\\1 \end{bmatrix} \xrightarrow{x_2 = x_1} x_1 \\ \begin{bmatrix} 1\\0 \end{bmatrix} \xrightarrow{x_1} x_1$	$\left[\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right]$
Reflection through the line $x_2 = -x_1$	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ x_{2} x_{1} $x_{2} = -x_{1}$	$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$
Reflection through the origin	$\begin{bmatrix} -1 \\ 0 \end{bmatrix} \xrightarrow{x_2} x_1$	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

TABLE 1 Reflections

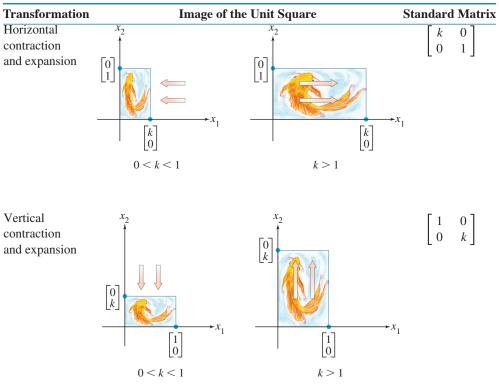
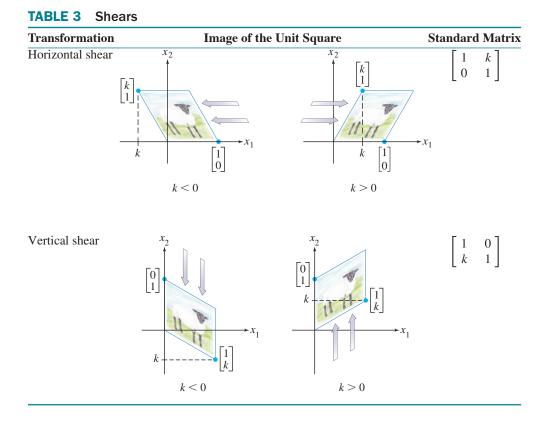


 TABLE 2
 Contractions and Expansions



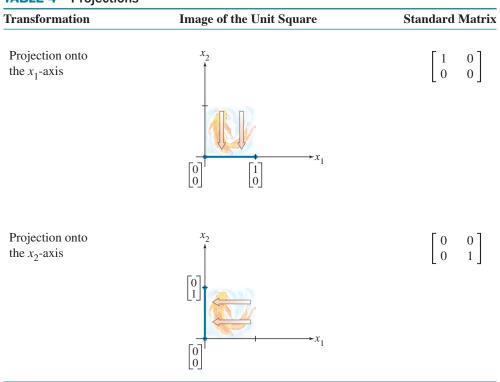
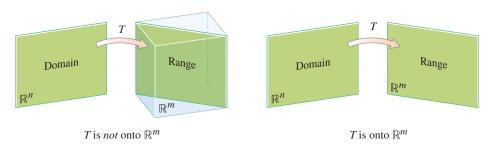


TABLE 4 Projections

DEFINITION

A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of *at least one* **x** in \mathbb{R}^n .

Equivalently, T is onto \mathbb{R}^m when the range of T is all of the codomain \mathbb{R}^m . That is, T maps \mathbb{R}^n onto \mathbb{R}^m if, for each **b** in the codomain \mathbb{R}^m , there exists at least one solution of $T(\mathbf{x}) = \mathbf{b}$. "Does T map \mathbb{R}^n onto \mathbb{R}^m ?" is an existence question. The mapping T is *not* onto when there is some **b** in \mathbb{R}^m for which the equation $T(\mathbf{x}) = \mathbf{b}$ has no solution. See Figure 3.



DEFINITION

A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if each **b** in \mathbb{R}^m is the image of *at most one* **x** in \mathbb{R}^n .