TABLE 1 Reflections
$\left.\begin{array}{lcc}\hline \text { Transformation } & \text { Image of the Unit Square } & \text { Standard Matrix } \\ \hline \begin{array}{l}\text { Reflection through } \\ \text { the } x_{1} \text {-axis }\end{array} & {\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]} \\ & \\ \hline 1\end{array}\right]$

Reflection through the x_{2}-axis

Reflection through the line $x_{2}=x_{1}$
the line $x_{2}=-x_{1}$

Reflection through

 the origin

$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]$

$\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$

$\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$

TABLE 2 Contractions and Expansions

TABLE 3 Shears

TABLE 4 Projections

Transformation	Image of the Unit Square	Standard Matrix
Projection onto the x_{1}-axis		$\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right]$
Projection onto the x_{2}-axis		$\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

DEFINITION

A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be onto \mathbb{R}^{m} if each \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}.

Equivalently, T is onto \mathbb{R}^{m} when the range of T is all of the codomain \mathbb{R}^{m}. That is, T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if, for each \mathbf{b} in the codomain \mathbb{R}^{m}, there exists at least one solution of $T(\mathbf{x})=\mathbf{b}$. "Does T map \mathbb{R}^{n} onto \mathbb{R}^{m} ?" is an existence question. The mapping T is not onto when there is some \mathbf{b} in \mathbb{R}^{m} for which the equation $T(\mathbf{x})=\mathbf{b}$ has no solution. See Figure 3.

FIGURE 3 Is the range of T all of \mathbb{R}^{m} ?

A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be one-to-one if each \mathbf{b} in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}.

